A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow

نویسنده

  • K. J. Rao
چکیده

It is often desirable to study turbulent flows at steady state even if the flow has no inherent source of turbulence kinetic energy. Doing so requires a forcing schema, and various methods applicable to laboratory experiments or numerical simulations have been studied extensively for turbulence that is isotropic and homogeneous in three dimensions. A review of existing schemata for simulations is used to form a framework for more general forcing methods. In this framework, the problem of developing a forcing method is abstracted into the two problems of (1) prescribing the spectrum of the input power and (2) specifying a force that has the desired characteristics and that adds energy to the flow with the correct spectrum. The framework is used to construct three forcing methods for simulating horizontally homogeneous and isotropic, vertically stratified turbulence. They are implemented in a pseudo-spectral large-eddy simulations and their characteristics are analyzed. The framework is then used to characterize existing laboratory experiments. While no exact analogy can be drawn between forcing in esoteric pseudo-spectral simulations and forcing in physical experiments, there are many similarities. It is suggested that the forcing framework can be applied to predict and systematically test the effects of configuration choices made in the design of simulations and laboratory experiments. VC 2011 American Institute of Physics. [doi:10.1063/1.3599704]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the turbulent Prandtl number in homogeneous stably stratified turbulence

In this paper, we derive a general relationship for the turbulent Prandtl number Pr t for homogeneous stably stratified turbulence from the turbulent kinetic energy and scalar variance equations. A formulation for the turbulent Prandtl number, Pr t , is developed in terms of a mixing length scale LM and an overturning length scale LE , the ratio of the mechanical (turbulent kinetic energy) deca...

متن کامل

Stochastic coherent adaptive LES of forced isotropic turbulence

The stochastic coherent adaptive large eddy simulation (SCALES) method [1] exploits a wavelet thresholding filter-based dynamic grid adaptation strategy to solve for the energetic “coherent” eddies in a turbulent flow field. The effect of the residual less energetic flow structures is modeled by supplying the simulation with a suitable subgrid-scale (SGS) model. The SCALES approach was successf...

متن کامل

Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow

One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...

متن کامل

Astronomische Nachrichten Astronomical Notes RE PR INT Turbulent viscosity and Λ - effect from numerical turbulence models

Homogeneous anisotropict urbulence simulations are used to determine off-diagonal componentso fthe Reynolds stress tensora nd itsp arameterizationi nt erms of turbulentv iscosity and Λ-effect.T he turbulence is forced in an anisotropic fashion by enhancing thestrengthofthe forcing in thevertical direction. TheCoriolis force is included with arotationaxis inclined relativetothe vertical directio...

متن کامل

Numerical experiments on strongly stratified homogeneous shear turbulence

Turbulence in strongly stable density stratification is a common phenomenon in atmosphere and in oceans and other large water bodies. Stably and strongly stratified turbulence have been studied in many experimental and numerical studies. A characteristic feature of strongly stratified turbulence observed in several studies is the formation of quasi-horizontal layers. During the last decade, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011